

SN65176B, SN75176B

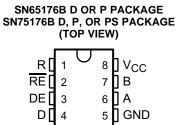
SLLS101E - JULY 1985-REVISED JANUARY 2014

SNx5176B Differential Bus Transceivers

Check for Samples: SN65176B, SN75176B

FEATURES

- Bidirectional Transceivers
- Meet or Exceed the Requirements of ANSI Standards TIA/EIA-422-B and TIA/EIA-485-A and ITU Recommendations V.11 and X.27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Driver and Receiver Outputs
- Individual Driver and Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- ± 60-mA Max Driver Output Capability
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- 12-kΩ Min Receiver Input Impedance
- ± 200-mV Receiver Input Sensitivity
- 50-mV Typ Receiver Input Hysteresis
- Operate From Single 5-V Supply


DESCRIPTION

The SN65176B and SN75176B differential bus transceivers are integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet ANSI Standards TIA/EIA-422-B and TIA/EIA-485-A and ITU Recommendations V.11 and X.27.

The SN65176B and SN75176B devices combine a 3state differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have activehigh and active-low enables, respectively, that can be connected together externally to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus when the driver is disabled or V_{CC} = 0. These ports feature wide positive and negative commonmode voltage ranges, making the device suitable for party-line applications.

The driver is designed for up to 60 mA of sink or source current. The driver features positive and negative current limiting and thermal shutdown for protection from line-fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150°C. The receiver features a minimum input impedance of 12 k Ω , an input sensitivity of ±200 mV, and a typical input hysteresis of 50 mV.

The SN65176B and SN75176B devices can be used in transmission-line applications employing the SN75172 and SN75174 quadruple differential line drivers and SN75173 and SN75175 quadruple differential line receivers.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65176B, SN75176B

SLLS101E - JULY 1985-REVISED JANUARY 2014

AS

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Function Tables

Driver⁽¹⁾

INPUT	ENABLE	OUT	PUTS
D	DE	Α	В
Н	Н	Н	L
L	Н	L	Н
x	L	Z	Z

(1) H = high level,

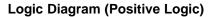
L = low level,

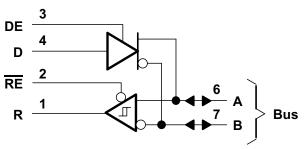
? = indeterminate,

X = irrelevant,

Z = high impedance (off)

Receiver⁽¹⁾

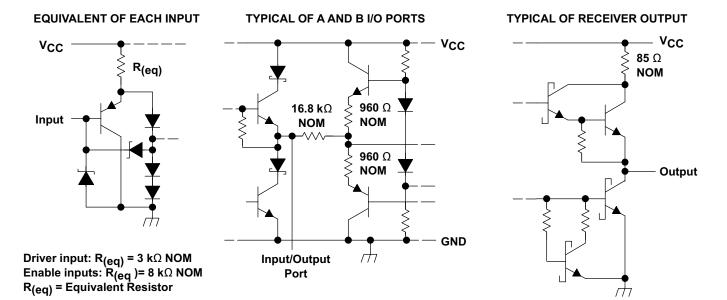

DIFFERENTIAL INPUTS A-B	ENABLE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \le -0.2 V$	L	L
Х	Н	Z
Open	L	?


(1) H = high level,

L = low level,

? = indeterminate, X = irrelevant,

Z = high impedance (off)



SLLS101E - JULY 1985-REVISED JANUARY 2014

www.ti.com

SCHEMATICS OF INPUTS AND OUTPUTS

SN65176B, SN75176B

SLLS101E-JULY 1985-REVISED JANUARY 2014

www.ti.com

NSTRUMENTS

EXAS

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾			7	V
	Voltage range at any bus terminal	-10	15	V	
VI	Enable input voltage		5.5	V	
		D package		97	
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	P package		85	°C/W
			95		
TJ	Operating virtual junction temperature			150	°C
	Lead temperature 1,6 mm (1/16 inch) from case for		260	°C	
T _{stg}	Storage temperature range	-65	150	°C	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2)

All voltage values, except differential input/output bus voltage, are with respect to network ground terminal. Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A) / \theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. (3)

(4)

Recommended Operating Conditions

			MIN	TYP	MAX	UNIT		
V _{CC}	Supply voltage		4.75	5	5.25	V		
V or V	Voltage at any hue terminal (concrete			12	V			
V_{I} or V_{IC}	Voltage at any bus terminal (separate	ay of common mode)			-7	v		
V _{IH}	High-level input voltage	D, DE, and RE	2			V		
VIL	Low-level input voltage	D, DE, and RE			0.8	V		
V _{ID}	Differential input voltage ⁽¹⁾	l input voltage ⁽¹⁾				V		
		Driver			-60	mA		
I _{OH}	High-level output current	Receiver			-400	μA		
1		Driver			60			
IOL	Low-level output current	Receiver			8	mA		
-		SN65176B	-40		105	*		
IA	Operating free-air temperature	SN75176B	0		70	°C		

(1) Differential input/output bus voltage is measured at the noninverting terminal A, with respect to the inverting terminal B.

Driver Section Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V _{IK}	Input clamp voltage	I _I = -18 mA				-1.5	V
Vo	Output voltage	I _O = 0		0		6	V
V _{OD1}	Differential output voltage	I _O = 0		1.5	3.6	6	V
N7 1	Differential autout unlie no	$R_L = 100 \Omega$, see Figur	e 1	1/2 V_{OD1} or 2 $^{\rm (3)}$			
V _{OD2}	Differential output voltage	$R_L = 54 \Omega$, see Figure	1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	See ⁽⁴⁾		1.5		5	V
$\Delta V_{OD} $	Change in magnitude of differential output voltage ⁽⁵⁾	$R_L = 54 $ Ω or 100 Ω, s	ee Figure 1			±0.2	V
V _{OC}	Common-mode output voltage	$R_L = 54 $ Ω or 100 Ω, s	ee Figure 1			+3 –1	V
$\Delta V_{OC} $	Change in magnitude of common-mode output voltage ⁽⁵⁾	R_L = 54 Ω or 100 Ω, see Figure 1				±0.2	V
	Output ourrent	Output dischlad ⁽⁶⁾	V _O = 12 V			1	~ ^
I _O	Output current		Output disabled ⁽⁶⁾ $V_0 = -7 V$			-0.8	mA
I _{IH}	High-level input current	V ₁ = 2.4 V				20	μA
I _{IL}	Low-level input current	V ₁ = 0.4 V				-400	μA
		$V_0 = -7 V$				-250	
	Chart aircuit autout aurrent	$V_{O} = 0$				-150	~ ^
I _{OS}	Short-circuit output current	$V_{O} = V_{CC}$				250	mA
		V _O = 12 V				250	
	Supply ourrent (total package)	No load Outputs enabled Outputs disabled			42	70	mA
Icc	Supply current (total package)				26	35	ШA

The power-off measurement in ANSI Standard TIA/EIA-422-B applies to disabled outputs only and is not applied to combined inputs and (1) outputs.

(2)

(3)

All typical values are at V_{CC} = 5 V and T_A = 25°C. The minimum V_{OD2} with a 100- Ω load is either 1/2 V_{OD1} or 2 V, whichever is greater. See ANSI Standard TIA/EIA-485-A, Figure 3.5, Test Termination Measurement 2. (4)

(5) $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

This applies for both power on and off; refer to ANSI Standard TIA/EIA-485-A for exact conditions. The TIA/EIA-422-B limit does not (6) apply for a combined driver and receiver terminal.

Switching Characteristics

 V_{CC} = 5 V, R_L = 110 Ω , T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{d(OD)}	Differential-output delay time	$R_L = 54 \Omega$, see Figure 3		15	22	ns
t _{t(OD)}	Differential-output transition time	$R_L = 54 \Omega$, see Figure 3		20	30	ns
t _{PZH}	Output enable time to high level	See Figure 4		85	120	ns
t _{PZL}	Output enable time to low level	See Figure 5		40	60	ns
t _{PHZ}	Output disable time from high level	See Figure 4		150	250	ns
t _{PLZ}	Output disable time from low level	See Figure 5		20	30	ns

Symbol Equivalents										
DATA SHEET PARAMETER	TIA/EIA-422-B	TIA/EIA-485-A								
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}								
V _{OD1}	Vo	Vo								
V _{OD2}	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$								
V _{OD3}		V _t (test termination measurement 2)								
$\Delta V_{OD} $	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $								
V _{OC}	V _{os}	V _{os}								
$\Delta V_{OC} $	$ V_{os} - \overline{V}_{os} $	$ V_{os} - \overline{V}_{os} $								
I _{OS}	I _{sa} , I _{sb}									
Ι _Ο	I _{xa} , I _{xb}	l _{ia} , l _{ib}								

Symbol Equivalents

Receiver Section Electrical Characteristics

over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	$V_0 = 2.7 \text{ V}, I_0 = -0.4 \text{ mA}$	$V_{\rm O} = 2.7$ V, $I_{\rm O} = -0.4$ mA			0.2	V
V _{IT}	Negative-going input threshold voltage	$V_0 = 0.5 V, I_0 = 8 mA$	$V_{O} = 0.5 \text{ V}, I_{O} = 8 \text{ mA}$				V
V _{hys}	Input hysteresis voltage (V _{IT+} – V _{IT–})				50		mV
VIK	Enable Input clamp voltage	I _I = -18 mA	I _I = -18 mA			-1.5	V
V _{OH}	High-level output voltage	V _{ID} = 200 mV, I _{OH} = -400	μA, see Figure 2	2.7			V
V _{OL}	Low-level output voltage	$V_{ID} = -200 \text{ mV}, I_{OL} = 8 \text{ m}.$	$V_{ID} = -200 \text{ mV}$, $I_{OL} = 8 \text{ mA}$, see Figure 2			0.45	V
I _{OZ}	High-impedance-state output current	$V_0 = 0.4 \text{ V}$ to 2.4 V			±20	μA	
		O(1) (1) (2)	$V_{l} = 12 V$			1	•
II	Line input current	Other input = 0 $V^{(3)}$	$V_I = -7 V$			-0.8	mA
I _{IH}	High-level enable input current	V _{IH} = 2.7 V	L			20	μA
IIL	Low-level enable input current	V _{IL} = 0.4 V				-100	μA
r _l	Input resistance	V _I = 12 V		12			kΩ
los	Short-circuit output current		-15		-85	mA	
			Outputs enabled		42	55	•
I _{CC}	Supply current (total package)	No load Outputs disabled			26	35	mA

(1) All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for commonmode input voltage and threshold voltage levels only.

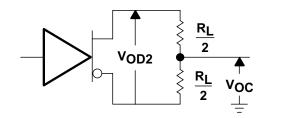
(3) This applies for both power on and power off. Refer to EIA Standard TIA/EIA-485-A for exact conditions.

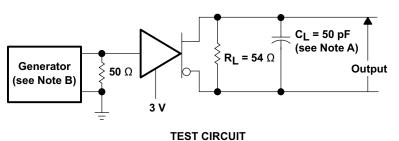
Switching Characteristics

$V_{CC} = 3$	5 V, C _L = 15 pF, T _A = 25°C					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output			21	35	20
t _{PHL}	Propagation delay time, high- to low-level output	$V_{ID} = 0$ to 3 V, see Figure 6		23	35	ns
t _{PZH}	Output enable time to high level			10	20	20
t _{PZL}	Output enable time to low level	See Figure 7		12	20	ns
t _{PHZ}	Output disable time from high level			20	35	20
t _{PLZ}	Output disable time from low level	See Figure 7		17	25	ns

6

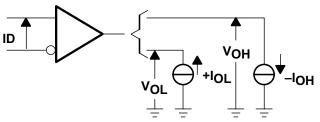
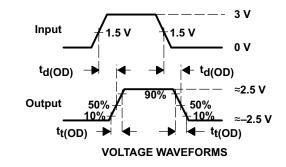
STRUMENTS

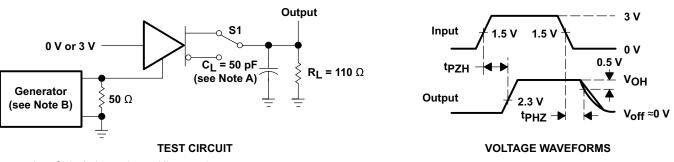

XAS


SN65176B, SN75176B

SLLS101E – JULY 1985 – REVISED JANUARY 2014

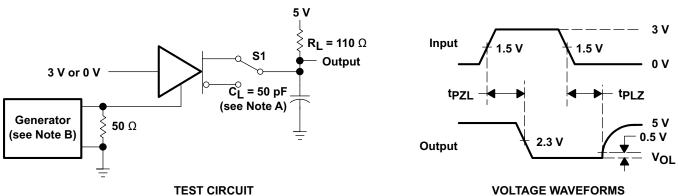
Parameter Measurement Information

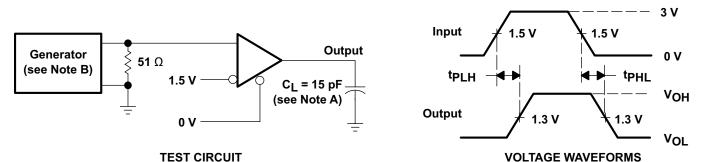

Figure 2. Receiver V_{OH} and V_{OL}

A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR ≤1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_0 = 50 \Omega$.


Figure 3. Driver Test Circuit and Voltage Waveforms

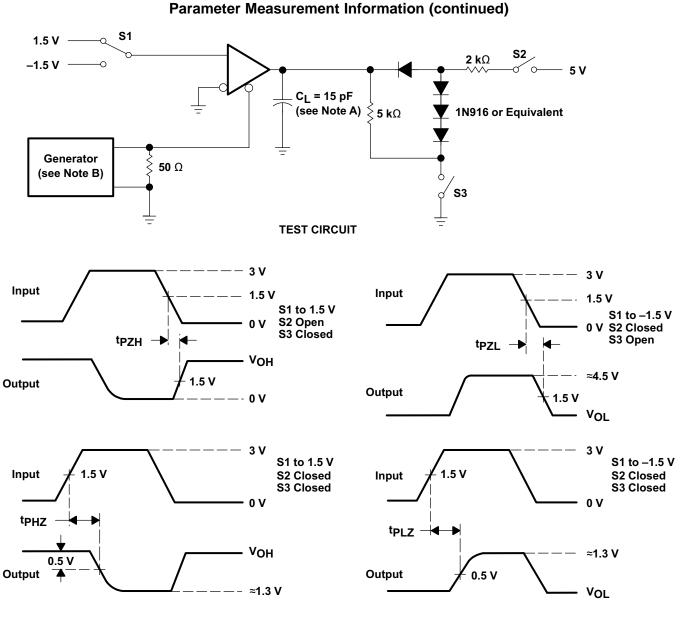
- A. C_L includes probe and jig capacitance.
- B. The input pulse is supplied by a generator having the following characteristics: PRR ≤1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50 \Omega$.


Figure 4. Driver Test Circuit and Voltage Waveforms

- C_L includes probe and jig capacitance. Α.
- The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤ 6 В. ns, $t_f \le 6$ ns, $Z_O = 50 \Omega$.

- C₁ includes probe and jig capacitance. Α.
- Β. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤ 6 ns, $t_f \leq 6$ ns, $Z_{\Omega} = 50 \Omega$.

Figure 6. Receiver Test Circuit and Voltage Waveforms


www.ti.com

ISTRUMENTS

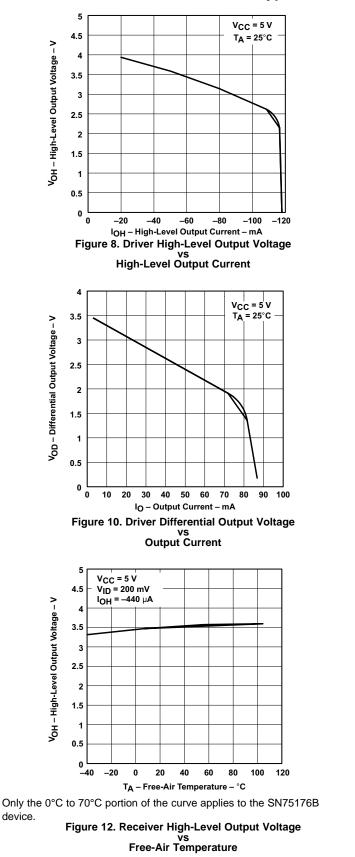
EXAS

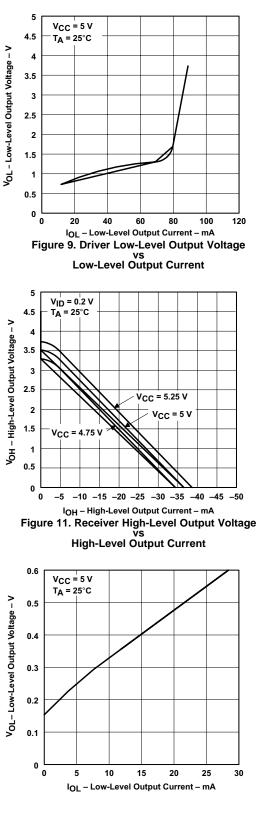
8

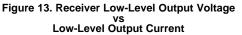
VOLTAGE WAVEFORMS

A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR ≤1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50 \Omega$.

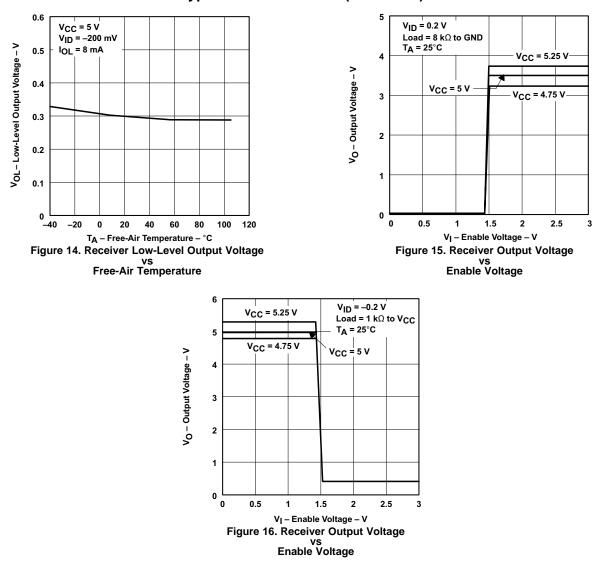

Figure 7. Receiver Test Circuit and Voltage Waveforms


SN65176B, SN75176B SLLS101E – JULY 1985–REVISED JANUARY 2014



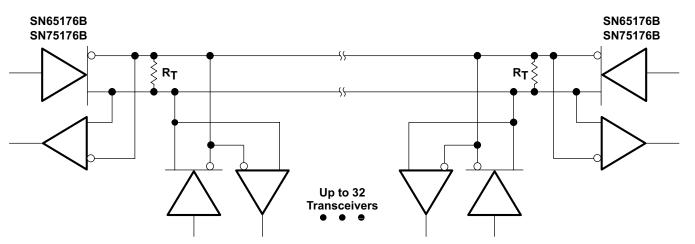
www.ti.com

Typical Characteristics



SLLS101E - JULY 1985-REVISED JANUARY 2014

Typical Characteristics (continued)


SLLS101E - JULY 1985-REVISED JANUARY 2014

APPLICATION INFORMATION

FEXAS

NSTRUMENTS

The line should be terminated at both ends in its characteristic impedance ($R_T = Z_O$). Stub lengths off the main line should be kept as short as possible.

Figure 17. Typical Application Circuit

SLLS101E - JULY 1985-REVISED JANUARY 2014

REVISION HISTORY

Ch	nanges from Revision D (April 2003) to Revision E Pa	age
•	Updated document to new TI data sheet format - no specification changes.	1
•	Deleted Ordering Information table.	1
•	Added ESD warning.	2

17-May-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN65176BD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	(4/3) 65176B	Samples
SN65176BDE4	ACTIVE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 105		Samples
SN65176BDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	65176B	Samples
SN65176BDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 105	65176B	Samples
SN65176BDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	65176B	Samples
SN65176BDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 105	65176B	Samples
SN65176BP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 105	SN65176BP	Samples
SN65176BPE4	ACTIVE	PDIP	Ρ	8		TBD	Call TI	Call TI	-40 to 105		Samples
SN75176BD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75176B	Samples
SN75176BDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75176B	Samples
SN75176BDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75176B	Samples
SN75176BDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	75176B	Samples
SN75176BDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75176B	Samples
SN75176BDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75176B	Samples
SN75176BP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75176BP	Samples
SN75176BPE4	ACTIVE	PDIP	Ρ	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75176BP	Samples
SN75176BPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	A176B	Samples

17-May-2014

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN75176BPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	A176B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

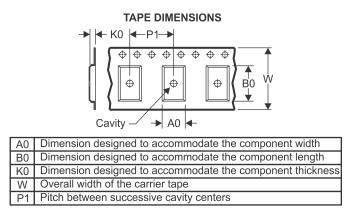
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

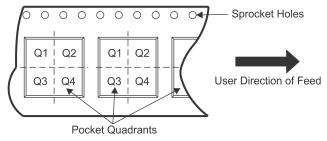
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

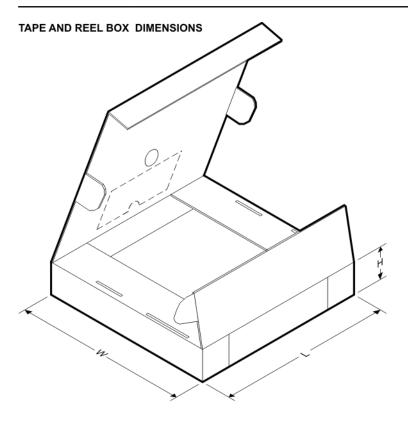

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

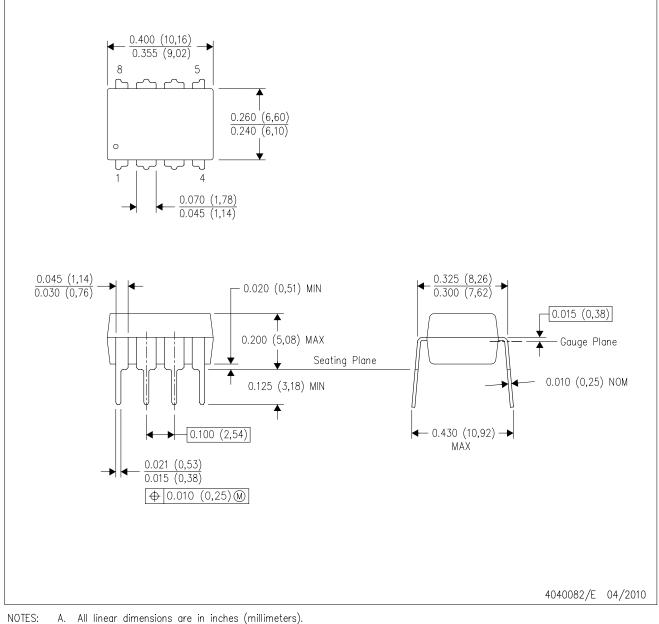

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65176BDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65176BDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75176BDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75176BDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75176BPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-Feb-2014



*All dimensions are nominal

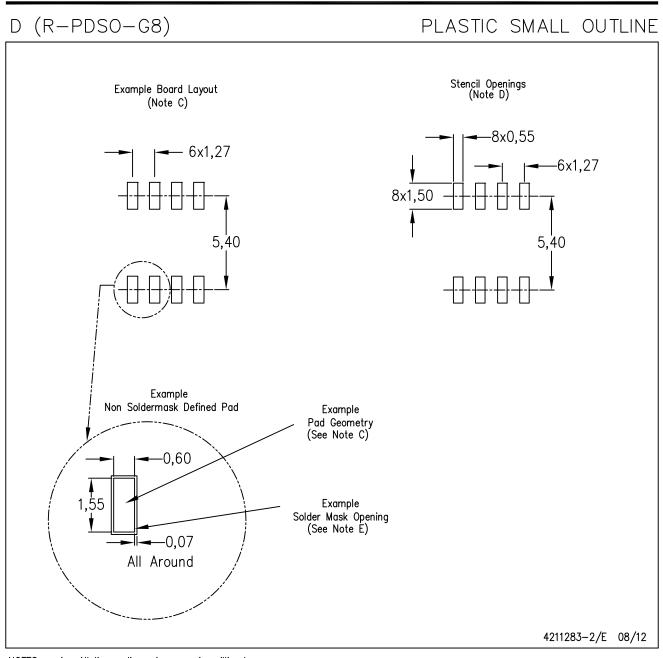
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65176BDR	SOIC	D	8	2500	340.5	338.1	20.6
SN65176BDRG4	SOIC	D	8	2500	340.5	338.1	20.6
SN75176BDR	SOIC	D	8	2500	340.5	338.1	20.6
SN75176BDRG4	SOIC	D	8	2500	340.5	338.1	20.6
SN75176BPSR	SO	PS	8	2000	367.0	367.0	38.0

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

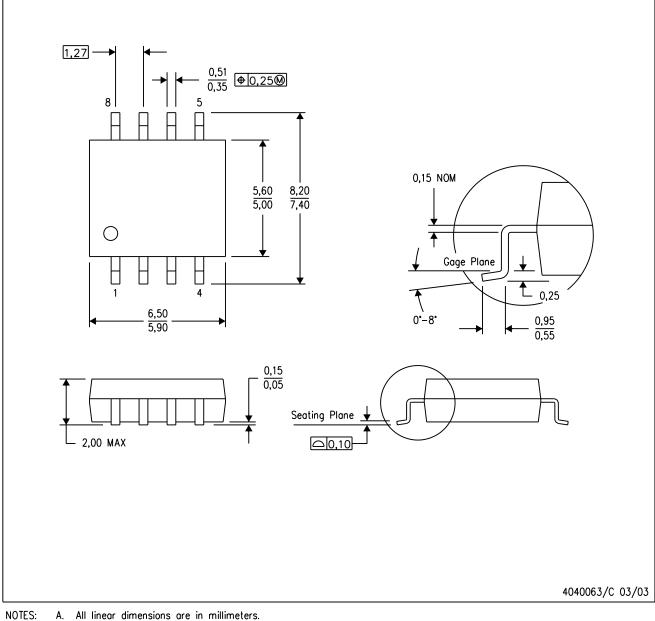
D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications				
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive			
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications			
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers			
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps			
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy			
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial			
Interface	interface.ti.com	Medical	www.ti.com/medical			
Logic	logic.ti.com	Security	www.ti.com/security			
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense			
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video			
RFID	www.ti-rfid.com					
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com			
Wireless Connectivity	www.ti.com/wirelessconnectivity					

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated